Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics Squeezing out efficient thermoelectrics Thermoelectric materials hold the promise of converting waste heat into electricity. The challenge is to develop high-efficiency materials that are not too expensive. Kim et al. suggest a pathway for developing inexpensive thermoelectrics. They show a dramatic improvement of efficiency in bismuth telluride samples by quickly squeezing out excess liquid during compaction. This method introduces grain boundary dislocations in a way that avoids degrading electrical conductivity, which makes a better thermoelectric material. With the potential for scale-up and application to cheaper materials, this discovery presents an attractive path forward for thermoelectrics.
Squeezing out efficient thermoelectrics Thermoelectric materials hold the promise of converting waste heat into electricity. The challenge is to develop high-efficiency materials that are not too expensive. Kim et al. suggest a pathway for developing inexpensive thermoelectrics. They show a dramatic improvement of efficiency in bismuth telluride samples by quickly squeezing out excess liquid during compaction. This method introduces grain boundary dislocations in a way that avoids degrading electrical conductivity, which makes a better thermoelectric material. With the potential for scale-up and application to cheaper materials, this discovery presents an attractive path forward for thermoelectrics.
Kommentare